Angle Up

Process implementation of APIDs into security checkpoints.

While most airports are currently on the verge of transitioning towards modern screening equipment such as Explosives Detection Systems for Cabin Baggage (EDS CB), Automated lanes and Security Scanners; Airport Managers will soon be presented with value adding components to further streamline security operations. As touched upon in previous blogs, APIDS acts as an important solution to orchestrate the security operation in terms of human resources, operating costs and eventually to influence waiting times for security in a positive manner. In fact, implementation of APIDS might even brighten up the business case for moving towards EDS CB equipped security operations in parallel.

As operational APIDS trials are currently being prepared and performed, legislative outlines start to become visible to the industry and the first ECAC approval standards are expected early 2023, APIDS now take place on the near-term roadmap for implementation. But how do you start planning for APIDS implementation? Point FWD assists airports and security companies in security change projects and in this blog share their thoughts on the most important steps to take for APIDS consideration.

1.       Understand the impact and formulate a strategy

When looking at APIDS – and any other type of technology change in the checkpoint environment basically – it is of utmost and primary importance to fully understand every characteristic and capability of the technology, most importantly to assess the impact on current security operations. For APIDS specifically, it is expected that full system capability in combination with EDS CB screening could go in direction of HBS-like automation levels. In that perspective, changing towards EDS systems for the checkpoint become even more beneficial for the airport, and studying what solution (C-1, C-2 or C-3) best fits the airport requirements is then essential. For those involved in security change projects, it goes without saying; checkpoint (re)design requires a great amount of efforts to achieve a balanced and successful new process.

The success of APIDS implementation goes hand in hand with the introduction of Open Architecture of systems in Aviation Security screening setups. APIDS solutions will also be developed by highly competent companies other than screening equipment OEMs and for this reason flexibility and interoperability between systems is key to enable new-entrant companies develop smart solutions that interoperate within the security landscape. Hence, when tendering for solutions as such, it is very important to look at it from the broader checkpoint operation with regards to data exchange, interoperability, CONOPs, checkpoint layouts and other operational implications.

2.       Create functional and operational designs of the new checkpoint process

A holistic view is key when upgrading or re-designing the security checkpoint with any technology or security measure. It is certainly not a matter of replacing a machine or adding an algorithm. Moreover, it is about rebalancing all processes to accommodate for the technology implementation(s) as initiated, and obviously this is no different for APIDS implementation. The expectation (and promise) of APIDS is that less screeners per lane are required to screen the same number of images, but with the requirement that centralized image analysis – or networked screening – is in place to be able to gain the potential.

The optimal security lane and checkpoint design is unique for every airport and can even vary across the airport for the different checkpoints. For this reason, using process characteristics from the local situation is essential when developing for a future lane concept. Together with assumptions for future operation of APIDS systems and CONOPs, functional lane designs can be modelled and simulated to assess the impact on output figures such as passenger and tray throughput, (decreased) staffing of personnel and expected workloads. Doing so, various functional design scenarios can act as input for operational business case assessments, resulting in confidence and accuracy in strategic decision-making.

3.       Validate APIDS setups and start optimization

Trialing a new combination of systems and CONOPs in a real airport environment will always be the best step towards solution validation. That is, we can model and calculate the best we can, however, the true value (and pitfalls) of APIDS systems should be concluded in a real-life operational environment with all uncertainties present. It should always be the step in between initial design and final roll-out of a solution. Furthermore, in the trial setup, end-users are confronted with APIDS and will get trained or become known how to adapt to the new way of working. The insights that were gained during an APIDS trial should of course serve as input for simulations of final checkpoint design, lane concept development or even tender specification.

One of the main focus points to trial APIDS solutions in the AvSec checkpoints is to closely monitor every part of the coherent security process. Data capture and analysis helps to critically assess whether, where in the process and to what extend changes have occurred. Monitoring of APIDS technology trials can best be done using omni-source data collection – including machine, manual or sensor data. The reason for doing this is to be able to tackle any differentiation in process performance that might be present, including bottleneck shifting, decreased alarm resolution times or increased IPP due to seasonal change.            

4.       Start implementation and continuous monitoring of APIDS solutions.

The start of deployment of APIDS systems should be seen as the start of various other projects. Fully dependent on the CONOPs in which APIDS will be implemented, it is expected that new waves of technology will get certified and that other process CONOPs become available to the early airports adopting the primary APIDS technology. Therefore, continuous monitoring the operation remains key to be able to optimize for the most beneficial process including staffing and work instructions.

Furthermore, benefits of algorithm-based systems such as APIDS are expected to continue to grow, even outside of the checkpoint space and across airports. Via the Open Architecture of systems, airports with algorithms deployed should be able to work together by autonomously adapting to emerging threats, and mitigating security risks even further in the future.


 
 

Point FWD owns a core capability in planning for security checkpoint change related to technology upgrades, process improvements and terminal redesign or expansion projects. Point FWD assists with expert operational knowledge, fully supported with a comprehensive security process analysis and design platform. Contact the team for more info.